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Single-photon entanglement is a peculiar type of entanglement in which two or more degrees of freedom of a
single photon are correlated quantum-mechanically. Here, we demonstrate a photonic integrated chip able to
generate and manipulate single-photon path-entangled states, using a commercial red LED as light source.
A Bell test, in the Clauser, Horne, Shimony, and Holt (CHSH) form, is performed to confirm the presence
of entanglement, resulting in a maximum value of the CHSH correlation parameter equal to 2.605� 0.004.
This allows us to use it as an integrated semi-device independent quantum random number generator able
to produce certified random numbers. The certification scheme is based on a Bell’s inequality violation and
on a partial characterization of the experimental setup, without the need of introducing any further assumptions
either on the input state or on the particular form of the measurement observables. In the end a min-entropy
of 33% is demonstrated. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.488875

1. INTRODUCTION

Entanglement is one of the most striking features of quantum
physics. The non-classical correlations that entanglement indu-
ces in quantum states have been debated since 1935, when
Einstein, Podolski, and Rosen pointed out what would have
been named the EPR paradox after them [1]. It was only several
years later that a way out of the impasse was proposed by John
Bell. Its famous inequality [2] provides indeed a quantitative
solution to effectively demonstrate that correlations induced
by entanglement cannot be explained classically using any real-
istic local-hidden variable. Today entanglement represents a re-
source in many quantum applications, especially in quantum
computing and communications [3–8]. However, its exploita-
tion is mainly limited to research laboratories only, still far from
being used in real-life devices. This is mainly due to techno-
logical complexities related to its generation and management.

In photonics, entangled photons pairs are typically obtained
exploiting non-linear optical processes such as spontaneous
parametric downconversion [9] or four-wave mixing [10], us-
ing suitable laser sources. On the contrary, single-photon en-
tanglement (SPE) [11] can be more easily generated using

only linear optical components and cheap light sources, such as
LEDs [12]. SPE corresponds to quantum correlations between
two or more degrees of freedom (DoFs) of a single photon.
Examples of the possible DoFs used are momentum and polari-
zation [12–15]. From the mathematical point of view, SPE is
totally analogous to the entanglement of two photons, or
inter-photon entanglement. In both cases, the Hilbert space is
determined by the tensor product of two independent Hilbert
spaces: in the case of SPE, these are the spaces associated with
the two independent DoFs chosen, while, in the case of the inter-
photon entanglement, the two spaces are each one associated
with one of the two photons. Here, it is important to stress that
there is a whole literature on the non-locality of a single photon
[16,17] and on single-photon entanglement where the qubit is
the occupation state of an optical mode [18,19]. This is a form of
inter-photon entanglement. Therefore, it is physically different
from what we name here as SPE [13,14]. In SPE, the qubit is
not the state of a mode of the electromagnetic field (i.e., no use
of photon number or Fock states) but a degree of freedom
(i.e., momentum, polarization, path, or others) of a single pho-
ton [11]. And indeed, it is from the physical point of view that
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the differences are more remarkable. Inter-photon entanglement
exhibits a non-local phenomenology, while SPE concerns con-
textual, but local, observations. The meaning of the violation
of the Bell inequality is also different in the two scenarios. In
the case of inter-photon entanglement, it means that no realistic
local hidden variable theory is able to explain the experiment’s
results, while, in the case of SPE, it means that no realistic non-
contextual hidden variable theory is capable of predicting the
results [11]. The fact that SPE is a local phenomenon implies
that it cannot be used as a substitute for inter-photon entangle-
ment in many quantum applications. However, there can be
specific cases in which, thanks to the easier generation and man-
agement aspects, it can be exploited for developing entangle-
ment-based applications with potentially larger diffusion. One
of them concerns random number generation.

Random numbers are fundamental resources in many differ-
ent applications, such as gambling and gaming, lotteries, com-
puter simulation, and cryptography. In cryptography, in
particular, the unpredictability of the random sequence ensures
the reliability of the encryption protocols. To generate random
numbers, random number generators (RNGs) are usually ex-
ploited. Among all RNGs, quantum random number genera-
tors (QRNGs) [20,21] are the only ones that can generate truly
random numbers. Indeed, pseudo-random number generators
[22] and true-random number generators [23,24] exploit algo-
rithms and noisy/chaotic processes, respectively, to generate
random sequences. While the first ones are not truly random
by definition, the second ones involve complex physical proc-
esses making randomness certification quite hard to obtain. On
the contrary, for QRNGs such a certification is usually easier
and can be done even considering malicious and error-prone
implementation or an eavesdropper that is attacking the gen-
erator. Considering the level of security, QRNGs can be divided
into three categories: device-dependent QRNGs (DD-QRNGs),
device-independent QRNGs (DI-QRNGs) [8], and semi-
device-independent QRNGs (SDI-QRNGs) [20]. DD-QRNGs
are less secure, as their randomness certification scheme is based
on the perfect characterization of their physical implementation.
In perfect conditions, these QRNGs work quite well, but they
are unable to cope with any change in their performances, which
can possibly alter the produced randomness. DI-QRNGs are in-
stead the most secure QRNGs, since their a priori randomness
certification is independent by the actual characterization of the
physical system involved. However, their physical implementa-
tions are still particularly complex and challenging, strongly lim-
iting so far their exploitation to research labs only. The SDI-
QRNGs represent a trade-off between the easiness of
implementation of the DD-QRNGs and the security of the
DI-QRNGs: only limited parts of the physical implementation
are characterized, treating the others as black boxes.

In this work we propose a photonic integrated circuit (PIC)
able to generate and manipulate single-photon path-entangled
states by using typical integrated photonic devices such as
multi-mode interferometers (MMIs), thermal phase shifters
(PSs), Mach–Zehnder interferometers (MZIs), and crossings
(CRs) [25]. The qubit encoding is done using four waveguides:
depending on which waveguide the photon is injected, a cer-
tain state is codified [26,27]. The presence of entanglement is

validated by performing a Bell test [28]. SPE and Bell inequal-
ity violation are used to lower-bound the conditional min-
entropy of the generated sequence of measurement outcomes.
The min-entropy represents the figure of merit to quantify true
quantum randomness [29], and its correct estimation is funda-
mental for each RNG to obtain, from the raw sequence of gen-
erated bits, a sequence of uniform random digits using the
randomness extraction procedure [30]. In particular, condi-
tional min-entropy can quantify the level of unpredictability,
i.e., the security, of the produced sequence of raw bits inde-
pendently of classical noise sources and of any information po-
tentially accessible to an eavesdropper. In this context, statistical
tests such as NIST or Diehard are of secondary importance
since they can only check particular statistical properties of
the produced random sequence but cannot assess its level of
security. The reported PIC implements an SDI-QRNG. The
necessary assumptions on which it is based are the use of trusted
and characterized detectors and the not-maliciousness of the
experimental setup used, which can be, however, considered
error-prone. With respect to a previous work from a few of us
[15], the SDI-QRNG here proposed is a PIC exploiting an ex-
ternal commercial red LED as a light source and achieving a
high value of min-entropy in the most general and secure sce-
nario one can envision, thus making a significant step toward
real-world applications.

The paper is organized as follows. In Section 2, we introduce
SPE in the case of path entanglement and we detail the struc-
ture of the PIC. Then, in Section 3, all the non-idealities of the
experiment are considered and their effect on the Bell inequal-
ity is taken into account. In Section 5, we present the exper-
imental data that certify the generation of path-entangled
states. In Section 6, we present the experimental data demon-
strating our SDI-QRNG based on SPE states of path. Finally,
in Section 7 we draw the conclusion, and in Section 4 we report
the experimental methods.

2. SINGLE-PHOTON PATH-ENTANGLED STATES
ON A PIC

Single-photon entangled states are those states in which at least
two DoFs of a single photon are quantum correlated. Here we
generate single-photon path-entangled states by considering
four waveguides and two effective DoFs, namely the absolute
(jU i, jDi) and the relative (jFi, jN i) positions of each wave-
guide with respect to the symmetry axis of the system (dashed
white line in Fig. 1). According to the scheme of Fig. 1, such a
Hilbert space can be seen as H � C2 ⊗ C2.

The four states of the Bell basis in such qubit encoding are

jϕ�i � 1ffiffiffi
2

p �jUFi � jDN i�, (1)

jψ�i � 1ffiffiffi
2

p �jUN i � jDF i�: (2)

In this work, we focus on the state jϕ�i. To generate such
state, we have designed and fabricated a PIC (a scheme is re-
ported in Fig. 2) based on silicon oxynitride (SiOxNy) material,
a low-index contrast photonic platform [31]. The structure
of the PIC is simple and composed only of linear integrated
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optical elements: MMIs, PSs, MZIs, and CRs [32,33]. The first
part of the PIC (yellow box in Fig. 2) is responsible for gen-
erating the SPE state jϕ�i by exploiting a 50:50 MMI and two
PSs setting the relative phase ξ of the entangled state, that, apart
from a global non-influent phase, can be written as

jψi � 1ffiffiffi
2

p �jUF i � ieiξjDN i�, (3)

with ξ � ξ1 − ξ2, where ξ1�2� is the phase induced by the phase
shifter applied to jUF i�jDN i� in the generation stage. By tun-
ing ξ, it is eventually possible to precisely obtain the Bell
state jϕ�i.

To demonstrate the presence of entanglement, a Bell test
[34] in the Clauser, Horne, Shimony, and Holt (CHSH) form
[35] is operated. Its aim is to quantify the presence of corre-
lations between suitable measurements performed on the two
qubits considered. To run a Bell test, it is necessary to define
four measurement operations to be performed on the entangled
state and connected to two observables, fA�x�gx�0,1 and
fB�y�gy�0,1, each one dependent on a binary variable, x and
y, respectively. Such measurements must have binary outputs,
a and b, which can then assume values f�1g. In particular,
A�x� is an observable that has to be measured only on one
qubit, while B�y� only on the other. By defining the correlation
coefficient E�x, y� as

E�x, y� � P�a � bjx, y� − P�a ≠ bjx, y�, (4)

where P�a � bjx, y� is the conditional probability of observing
a � b and P�a ≠ bjx, y� is the conditional probability of
observing a ≠ b, it is possible to define the correlation function
χ as

χ �
X

�−1�xyE�x, y�: (5)

If jχj > 2, then we are dealing with an entangled state. More
precisely, entanglement is a necessary but non-sufficient con-
dition for a state to satisfy such an inequality, while separable
states always result in jχj < 2 [35]. In the PIC, the Bell test is
performed by using the other two stages. The two measurement
operations fA�x�gx�0,1 and fB�y�gy�0,1 are implemented by a
combination of four MZIs with the help of two CRs and four
single-photon avalanche diodes (SPADs) that are off-chip. In
particular, two MZIs work in parallel to rotate the relative-
position qubit by an angle ϕ (green box at the center of Fig. 2),
while two cascaded MZIs, separated by a pair of CRs, rotate the
absolute-position qubit by an angle θ (green box on the right
side of Fig. 2), where ϕ and θ correspond to y and x in Eq. (4),
respectively. A fair implementation of such rotations requires
that the same rotation angle is set for both the MZIs relative
to the same qubit. Then, the rotated SPE state is projected over
the four states jUF i, jUN i, jDF i, and jDN i composing the
Hilbert space, by means of four waveguides coupled to four
off-chip SPADs. According to this, the observable can be con-
structed in the following way:

A�θ� � U †
1�θ�σzU 1�θ�, (6)

B�ϕ� � U †
2�ϕ�σzU 2�ϕ�, (7)

where U 1 is the action of the MZIs that rotate the absolute-
position qubit, U 2 represents the action of the MZIs that
rotate the relative-position qubit, and σz is the z-Pauli matrix.
In our PIC, σz is represented by the projection on the com-
putational basis jUF i, jUN i, jDF i, and jDN i. In particular,
we recall that the states jU i and jF i are eigenstates of the
operator σz with eigenvalue �1, while jDi and jN i are eigen-
states of the operator σz with eigenvalue −1. Consequently, the
case a � b is obtained every time the wave function collapses
on the state jUF i�a � b � �1� or jDN i�a � b � −1�.
In contrast, the situation a ≠ b is obtained when the
other states are detected, i.e., jUN i�a � �1, b � −1�,
jDFi�a � −1, b � �1�. Thus,

Fig. 2. Schematic representation of the PIC used for random number generation based on SPE. In cyan, the optical waveguides; in blue, the oxide
cladding. A red LED is used as a light source. Light coupling in and out of the PIC is performed using tapered optical fibers (transparent cones in the
drawing). The PIC can be divided into three parts: generation, relative-position rotation, and absolute-position rotation. The generation stage is
enclosed by the yellow rectangle on the left side. Here, the entangled state is created. The relative-position rotation corresponds to the first green
rectangle from the left: here two MZIs rotate the qubit of relative position by an angle ϕ. The absolute-position rotation stage is found in the large
green rectangle on the right side: here two MZIs rotate the qubit of absolute position by an angle θ. At the output, the rotated state is projected onto
one of the four states composing the basis of the four-dimensional Hilbert space: jUF i, jUN i, jDF i, and jDN i. List of abbreviations: MMI, multi-
mode interferometer; PS, phase shifter; MZI, Mach–Zehnder interferometer; CR, crossing; SPADs, single-photon avalanche diodes.

Fig. 1. Qubit encoding. Two qubits describe the system and are
encoded according to the absolute and relative positions of the wave-
guide in which the photon is injected with respect to the dashed white
line. The values of the two qubits are fixed using the following bases:
absolute position (up jU i and down jDi) and relative position (far jF i
and near jN i).
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P�a � bjx, y� � P�jUFijϕ, θ� � P�jDN ijϕ, θ�, (8)

P�a ≠ bjx, y� � P�jUN ijϕ, θ� � P�jDF ijϕ, θ�, (9)

where P�jμνijϕ, θ� is the probability of observing the state jμνi
given the pair of angles �ϕ, θ�. Such probability can be
written as

P�jμνijϕ, θ� � Tr�U �ϕ, θ�ρU �ϕ, θ�†Pμ ⊗ Pν�, (10)

where U �ϕ, θ� � U 1�θ� ⊗ U 2�ϕ� is the action of the MZIs
in the PIC, Pμ ⊗ Pν is the projection operation on the state,
and ρ is the density matrix of the state written in the generation
stage. Therefore, Eq. (4) becomes

E�ϕ, θ� � P�jUF ijϕ, θ� � P�jDN ijϕ, θ�
− P�jUN ijϕ, θ� − P�jDF ijϕ, θ�: (11)

The theoretical form of the correlation coefficient E and
correlation function χ can be calculated introducing the matrix
representation of the MZIs. In particular, an MZI is composed
of two 50:50 beam splitters, implemented on-chip using MMI
devices, separated by two optical waveguides, each one having a
PS. In the ideal case, the 50:50 MMI and the PS matrix
representations are

UMMI �
1ffiffiffi
2

p
�
1 i
i 1

�
, U PS�ζ1, ζ2� �

�
e2iζ1 0
0 e2iζ2

�
:

(12)

Consequently, according to standard transfer matrix formal-
ism, the matrix representation of the MZI is

UMZI�ζ1, ζ2� � iei�ζ1�ζ2�
�
sin�ζ1 − ζ2� cos�ζ1 − ζ2�
cos�ζ1 − ζ2� − sin�ζ1 − ζ2�

�

� ieiZ
�
sin�ζ� cos�ζ�
cos�ζ� − sin�ζ�

�
: (13)

Essentially, each MZI implements a rotation of an angle
ζ � ζ1 − ζ2, with a global phase shift of Z � π∕2, with
Z � ζ1 � ζ2. Considering the four MZIs represented in
Fig. 2, ζ1 � ϕ1, ζ2 � ϕ2 for the two MZIs that rotate the
relative-position qubit (first green box from the left in Fig. 2),
while ζ1 � θ1, ζ2 � θ2 for the two MZIs that rotate the
absolute-position qubit (second green box from the left in

Fig. 2). By implementing two rotations of angles ϕ and θ,
respectively, for the relative- and absolute-position qubits,
the theoretical form of the correlation coefficient E�ϕ, θ�
becomes

E�ϕ, θ� � cos�2�ϕ − θ��, (14)

and the correlation function χ�ϕ,ϕ 0, θ, θ 0� results to be

χ�ϕ,ϕ 0, θ, θ 0� � cos�2�ϕ − θ�� − cos�2�ϕ − θ 0��
� cos�2�ϕ 0 − θ�� � cos�2�ϕ 0 − θ 0��: (15)

By introducing the parameter α, such that 2�ϕ − θ� �
2�ϕ 0 − θ 0� � −2�ϕ 0 − θ� � α, the correlation function can
be rewritten as

χ�α� � 3 cos�α� − cos�3α�: (16)

As shown in Fig. 2, to generate SPE states we use an LED.
As explained in detail in Ref. [12], the statistics of the photon
source does not affect the estimate of the correlation function χ
and the corresponding verification of Bell inequality viola-
tion since

• the photon flux is weak enough to yield a fairly low prob-
ability of having more than one photon in the time bin of
observation;

• only linear optical operations are performed, i.e., any
transformation is applied to single photons; and

• the observation is performed by single-photon detectors
that are both trusted and can fairly sample the outcome prob-
ability distributions.

3. NON-IDEALITIES IN THE EXPERIMENTAL
ESTIMATION OF χ �ϕ,ϕ 0, θ, θ 0�
Our experimental implementation is affected by a few non-
idealities, that in principle could result in a wrong estimation
of χ�ϕ,ϕ 0, θ, θ 0�. A first aspect to be considered is the broad-
band spectrum of emission of the LED. Indeed, the PIC has
been designed for λ � 730 nm, so that its performances are
optimized at that wavelength. However, the used LED source
has a broadband spectrum (λ � 730� 10 nm), so that the
wavelength-dependent behavior of the integrated optical ele-
ments has to be taken into account. For example, the matrix
representation of the MMIs becomes

UMMI�λ� �
�

t�λ� ir�λ�
ir�λ� t�λ�

�
, (17)

and consequently, the matrix representation of the MZIs is
correctly described by

UMZI�λ, ζ1, ζ2� �
 

t�λ�2e2iζ1�λ� − r�λ�2e2iζ2�λ� ir�λ�t�λ��e2iζ1�λ� � e2iζ2�λ��
ir�λ�t�λ��e2iζ1�λ� � e2iζ2�λ�� t�λ�2e2iζ2�λ� − r�λ�2e2iζ1�λ�

!
: (18)

A second aspect concerns losses. Waveguide propagation
losses have to be considered. Moreover, MMIs can have inser-
tion losses, meaning that t2�λ� � r2�λ� ≤ 1. Finally, a third
non-negligible aspect is represented by current instabilities of
the electronics controlling the PSs of the PIC. Indeed, a key
feature that must be ensured when a Bell test is performed
is that each qubit must be rotated independently by the other
[28]. More formally, the observables that are considered in a
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Bell test must be written in product form A�θ� ⊗ B�ϕ�. This is
ensured by imposing the same rotation angle on the two MZIs
rotating each qubit. To justify the above requirement, let us
consider the situation in which all the MZIs are set with differ-
ent rotation phases (see Fig. 3):

U �ϕ1,ϕ2,ϕ3,ϕ4��P1⊗UMZI�ϕ1,ϕ2��P2⊗UMZI�ϕ3,ϕ4�;
U �θ1,θ2,θ3,θ4��UMZI�θ1,θ2�⊗P1�UMZI�θ3,θ4�⊗P2;

P1�
�
1 0

0 0

�
, P2�

�
0 0

0 1

�
: (19)

The P1 and P2 matrices consider that each MZI rotates a
particular part of the SPE state that is generated: considering
the upper MZI in the first green box of Fig. 2, it rotates the far
and near components of the up part of the state. Consequently,
in order to have the equalities

U �ϕ1,ϕ2,ϕ3,ϕ4� � I ⊗ UMZI�ϕ1,ϕ2�, (20)

U �θ1, θ2, θ3, θ4� � UMZI�θ1, θ2� ⊗ I , (21)

in such a way that the overall rotation operator takes the
form U �ϕ, θ� � U �ϕ� ⊗ U �θ�, with ϕ � ϕ1 − ϕ2 and
θ � θ1 − θ2, the necessary requirements on the angles are
ϕ3 � ϕ1, ϕ4 � ϕ2 and θ3 � θ1, θ4 � θ2. However, current
instabilities cannot ensure such necessary product form to be
implemented. Please note that even thermal cross talk between
different PSs of the different MZIs could spoil the required
product form. However, this phenomenon has not been ob-
served, so it will be neglected in the following discussion
(see Section 4 for further details).

A. Broadband Light Source
Here, we consider the wavelength dependence of the transmis-
sion and reflection coefficients of the MMIs (t , r), as well as of
the rotation angles ζ1�2� set via the MZIs. Without any loss of
generality, we can represent the state ρ of the incoming photons
as a convex superposition of the following form:

ρ �
Z

ρωdμ�ω�, (22)

for a suitable probability measure μ over the set of possible
frequencies ω, while ρω represents the state of a monochromatic

photon. Since the different elements of the PIC have a response
which depends explicitly on the frequency ω of the incoming
photons, the overall action of the rotation stage can be described
by a family of unitary operators U �ϕ, θ�ω, in such a way that
each component ρω appearing in the decomposition Eq. (22)
evolves under the action of the operator U �ϕ, θ�ω:

ρω ↦ U �ϕ, θ�ωρωU �ϕ, θ�†ω, (23)

and by linearity, the transformation of the general state Eq. (22)
is given by

ρ ↦
Z

U �ϕ, θ�ωρωU �ϕ, θ�†ωdμ�ω�: (24)

The corresponding quantum probabilities are a convex
superposition of the following form:

P�a, bjϕ, θ� �
Z

P�a, bjϕ, θ�ωdμ�ω�, (25)

where

P�a, bjϕ, θ�ω � Tr�U �ϕ, θ�ωρωU �ϕ, θ�†ωPa ⊗ Pb�: (26)

This is equivalent to saying that each monochromatic com-
ponent ρω of the generic state Eq. (22) is subject to the mea-
surement of a different pair of observables, A�ϕ�ω ⊗ B�θ�ω,
associated with specific projection-valued measures (PVMs)
fPθ,ω

a ⊗ Pϕ,ω
b ga,b:

P�a, bjϕ, θ�ω � Tr�ρωPθ,ω
a ⊗ Pϕ,ω

b �
� Tr�U �ϕ, θ�ωρωU �ϕ, θ�†ωPa ⊗ Pb�: (27)

Analogously, the Bell parameter χ is given by the convex
superposition

χ �
Z

χωdμ�ω�, (28)

with

χω � Eω�ϕ, θ� − Eω�ϕ, θ 0� � Eω�ϕ 0, θ� � Eω�ϕ 0, θ 0�,
(29)

where

Eω�ϕ, θ� � P�a � bjϕ, θ�ω − P�a ≠ bjϕ, θ�ω: (30)

This means that using a broadband light source results in a
correlation function which is a spectrally weighted average. It is

Fig. 3. Schematic representation of the different phases (green) associated with each MZI with the relative phase errors (white). Each green
rectangle highlights the rotation operation performed by the considered MZI according to its phases.
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important to point out that this fact does not affect the entropy
certification protocol (see Section 6 and Appendix C).

Moreover, we want to stress that here the fact that our light
source is non-monochromatic does not require the use of a nar-
rowband optical filter for the actual integrated setup as it is the
case for the bulk one reported in Ref. [12]. Indeed, thanks to
the fact that the phase delay of MZIs is varied by slightly chang-
ing the refractive index of the waveguides all the rotation op-
erations naturally occur within the coherence time.

B. Losses
We can consider two types of losses affecting the PIC:

• waveguide propagation losses, that can be viewed as a
common factor e−αl, where α is the attenuation coefficient and
l is the length of the path (waveguide) taken by photons; and

• optical losses specific of each device, due to its insertion
in the PIC.

Thanks to the homogeneity of the discrete components and
to the symmetry of the PIC, in particular to the nominally
equal lengths of the paths corresponding to the four different
outputs (detection channels), the overall impact of losses can be
modeled by a diagonal operator of the form L � γI ⊗ I , with
γ ∈ �0,1�, hence commuting with any operator acting on the
2-qubits Hilbert space. Therefore, the probability of photon
detection per channel is given by

P�a, bjϕ, θ� � Tr�U �ϕ, θ�LρL†U �ϕ, θ�†Pa ⊗ Pb�
Tr�U �ϕ, θ�LρL†U �ϕ, θ�†� , (31)

which can be actually cast in the equivalent form

P�a, bjϕ, θ� � Tr�U �ϕ, θ�ρ 0U �ϕ, θ�†Px ⊗ Py �, (32)

with a different density operator ρ 0 ≔ LρL†

Tr�LρL† �. In addition, it is
even possible to consider the case in which the loss effect de-
pends explicitly on the photons’ frequency ω, according to the
discussion of the previous subsection. However, as Eq. (32) is of
the same form as Eq. (10), we can conclude that this issue does
not directly affect the estimate of the correlation function χ.

C. Current Instabilities
In all cases in which electrical currents applied to PSs do not
precisely correspond to the desired nominal values, an error
�δζ� is introduced for each PS. As a general consequence, the
matrices representing the rotation operators implemented by
the MZIs are no longer in product form, but they have to
be written as follows:

U real�ϕ1,ϕ2, δϕ1, δϕ2, δϕ3, δϕ4�
� P1 ⊗ UMZI�ϕ1 � δϕ1,ϕ2 � δϕ2�
� P2 ⊗ UMZI�ϕ1 � δϕ3,ϕ2 � δϕ4�;

U real�θ1, θ2, δθ1, δθ2, δθ3, δθ4�
� UMZI�θ1 � δθ1, θ2 � δθ2� ⊗ P1

� UMZI�θ1 � δθ3, θ2 � δθ4� ⊗ P2: (33)

Note that, with respect to Fig. 3, we have already introduced
the conditions ϕ3 � ϕ1, ϕ4 � ϕ2 and θ3 � θ1, θ4 � θ2. The
terms δϕ1, δϕ2, δϕ3, δϕ4, δθ1, δθ2, δθ3, δθ4 are all different
and appear both in the rotation angles ϕ � ϕ1 − ϕ2 and

θ � θ1 − θ2, as well as in the global phase terms imposed
by the MZIs Φ � ϕ1 � ϕ2 and Θ � θ1 � θ2. P1 and P2

are defined in Eq. (19). In this situation the matrix U PS is
influenced by the experimental error as

U real
PS�ζ1, ζ2� �

�
e2i�ζ1�δζ1� 0

0 e2i�ζ2�δζ2�

�
: (34)

In general, due to these current instabilities, the effective
angle of rotation is different for each PS of each MZI. For
clarity, we focus our discussion on the rotation angle ϕ, for
which δζ1 � δϕ1, δζ2 � δϕ2, δζ3 � δϕ3, δζ4 � δϕ4. Then,
the same arguments can be applied to current-related non-
idealities affecting the other rotation angle θ. We start by rep-
resenting the real operator describing the rotation of the related
qubit in the following form:

U real�ϕ1,ϕ2, δϕ1, δϕ2, δϕ3, δϕ4�
� P1 ⊗ UMMIU real

PS�ϕ1,ϕ2, δϕ1, δϕ2�UMMI

� P2 ⊗ UMMIU real
PS�ϕ1,ϕ2, δϕ3, δϕ4�UMMI: (35)

This problem is addressed by using the same techniques re-
ported in [15,36]: we look for an ideal operator that can be
written as I ⊗ U ideal whose distance from U real is the smallest
possible, i.e., an operator minimizing the distance from
U real�ϕ1,ϕ2, δϕ1, δϕ2, δϕ3, δϕ4� according to the Hilbert–
Schmidt norm. Without loss of generality, we can represent
U ideal as the productU ideal � UMMIW idealUMMI, for a suitable
unitary operator W ideal. In the general case, the real operator
describing the rotation of one qubit by an angle ϕ can be
represented as

U real�ϕ1,ϕ2, δϕ1, δϕ2, δϕ3, δϕ4� � �I ⊗ UMMI�
× �I ⊗ U ideal

PS �ϕ1,ϕ2��D�δϕ1, δϕ2, δϕ3, δϕ4��I ⊗ UMMI�,
(36)

where

D�δϕ1, δϕ2, δϕ3, δϕ4� �

0
BBBB@

e2iδϕ1 0 0 0

0 e2iδϕ2 0 0

0 0 e2iδϕ3 0

0 0 0 e2iδϕ4

1
CCCCA:

(37)

Similarly, we can rewrite the factorized unitary operator
U ideal, which minimizes the Hilbert–Schmidt distance from
U real, as

U ideal � I ⊗ �UMMIU PS�ϕ1,ϕ2�V idealUMMI� (38)

for a suitable unitary operator V ideal, where W ideal �
U PS�ϕ1,ϕ2�V ideal. By exploiting the representation of a generic
element of SU(2) as the exponential of a Pauli vector, the
generic unitary operator V ideal will be written in the form

V ideal � eiφeiϑn̂·σ � eiφ�cos ϑI � i sin ϑn̂ · σ�, (39)

for some φ, ϑ ∈ �0,2π�, and n̂ ∈ R3, kn̂k � 1. It can be proven
(see Appendix B) that for
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n̂ � �0,0,1�, φ � δϕ1 � δϕ3 � δϕ2 � δϕ4

2
,

ϑ � δϕ1 � δϕ3 − δϕ2 − δϕ4

2
, (40)

the Hilbert–Schmidt distance from U real is minimum. We re-
mark that the same reasoning can be applied also for current
instabilities affecting the angle θ.

Consequently, it is necessary to evaluate

eχ � max
fϕ,ϕ 0, θ, θ 0, ρg

jχideal�ϕ,ϕ 0, θ, θ 0� − χreal�ϕ,ϕ 0, θ, θ 0�j, (41)

which represents a correction term that has to be applied to the
experimental correlation function χreal. It takes into account
the fact that with U real we are not exactly applying a factorized
operator to the state ρ and so we are making the error eχ.
To estimate such a correction term, we use the numerical ap-
proach detailed in Ref. [15]. Note that in the construction of
χ�ϕ,ϕ 0, θ, θ 0� four correlation coefficients fEigi�1,…,4 are con-
sidered, each of them having different values of the errors
ffδϕi,j, δθi,kgj,k�1,…,4gi�1,…,4

. To simplify the evaluation, we

evaluate feχ,ξgξ�1,…,4 considering that the four fEigi�1,…,4

in χ have the same errors fδϕξ,j, δθξ,kgj,k�1,…,4 of the correla-

tion coefficient Exi.

D. Other Sources of Non-Idealities
Other non-idealities in our experimental setup come from the
detectors (dead-time, after-pulsing, and dark counts), especially
because no randomization of the input sequence of mea-
surement operations necessary to estimate the probabilities
fP�a, bjϕ, θ�gϕ,θ,a,b is performed. In this particular implemen-
tation we neglect such non-idealities because in Ref. [15] it has
been observed that, for a photon flux of ≃200 kHz, the cor-
rections to the probabilities are negligible. As a lower flux of
photons ≃120 kHz is here used (mainly because of LED-to-
fiber low coupling efficiency), we can safely neglect such a cor-
rection factor.

4. METHODS

The PIC has been fabricated in the cleanroom of Fondazione
Bruno Kessler. The waveguide core (300 nm thick and 700 nm
wide) is made of silicon oxynitride (SiOxNy) and the bottom
and top claddings are made, respectively, of thermally grown
silicon oxide (SiO2) and borophosphosilicate glass. The design
wavelength of the integrated components is 730 nm and the
mode polarization is transverse electric (TE). The linear char-
acterization of the building-blocks of the PIC, namely MMIs
and CRs, has been carried out using a spectrally filtered super-
continuum laser emitting from 300 to 2000 nm, and details
about their performances can be found in Appendix A. The
measured insertion loss of a 1 cm long straight waveguide is
27 dB for TE polarization.

Our experiment is performed using an attenuated commer-
cial LED at 730� 10 nm. The light coming from the LED is
collimated using an objective and polarized using a Glan–
Thompson polarizer. A fiber port is used to couple light inside
an optical fiber, where light is attenuated by means of a variable
optical attenuator and polarization is controlled and set to be

TE at the output. The input–output coupling is performed
using a standard fiber array. A power supply is used to control
the different phase shifters present on the PIC.

Prior to our measurements, a mandatory calibration of in-
tegrated MZIs has been performed using a Ti:sapphire laser
tuned at 730 nm. In particular, the phase-power relation
ϕ � ϕ�W � of the different MZIs is retrieved by fitting oper-
ations of the transmitted optical power using the following
equations:

I out1 � a cos �bW � d �2 � c, (42)

Iout2 � a sin �bW � d �2 � c, (43)

corresponding to the two output ports of an MZI, where
a, b, c, d are fitting parameters. This allows reconstruction of
the relation ϕ � ϕ�W � for each MZI by means of the linear
function ϕ�W � � bW � d . Please note that, to eliminate the
thermal cross talk between different MZIs, each PS is encap-
sulated between trenches (areas in which the core and cladding
materials are removed) to limit the heat propagation inside the
PIC. This and the low thermal conductivity of the silicon oxide
strongly limit the thermal cross talk, making it negligible during
the experiment.

The phase ξ � ξ1 − ξ2 of the generation stage is obtained
by another fitting operation, applying the correct calibration
to each MZI. Here an issue is due to the absence of addi-
tional compensation phase shifters after the MZIs rotating the
relative-position qubit. In this situation, the value of ξ to fix the
phase difference between the jN i components of the state basis
is different with respect to the one for the jF i components. For
this reason, the following strategy is introduced. First, we set
the value of ξ necessary to have the expected phase relation
between the jF i components, and only counts from channels
jUF i and jDF i are acquired. Second, the experiment is re-
peated acquiring only counts from channels jUN i and jDN i,
by changing ξ to the value that adjusts the phase relation of the
jN i components too.

Finally, the measurements to demonstrate our certified
QRNG integrated device are performed using four SPADs
(Excelitas), whose efficiencies have been equalized using fiber-
coupled variable optical attenuators, and whose electrical outputs
are sent to a time-tagging electronics (Swabian Instruments) con-
nected to a PC in order to count single-photon detection events
for each channel over time. The following procedure has been
followed. First, an angle of rotation θ of the absolute-position
qubit is fixed and a sweep over ϕ angles of relative position is
performed. For each pair �θ,ϕ� of angles, a 1 s time window is
acquired with a time bin set at 1 μs for the time tagger. Then, the
angle θ is changed and a sweep of the other angle ϕ is again
performed. Time bins with no detection events are discarded,
while whenever multiple photon detection events are registered
at different SPADs within the same time bin, one single event is
randomly assigned to one of the four two-qubit states by means
of a pseudo-random number generator.

5. EXPERIMENTAL DEMONSTRATION OF THE
PRESENCE OF ENTANGLEMENT

The experimental demonstration of the presence of entangle-
ment is performed by fixing the angle θ ∈ �−2,0� rad and
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performing a sweep of the rotation angle ϕ ∈ �−2,2� rad. An
acquisition 1 s long with a time bin of 1 μs is performed
for each �ϕ, θ�. The average photons flux is ≃120 kHZ. In this
way, we estimate the conditional probabilities P�jμνijϕ, θ� as
the empirical frequencies of the counts:

P�jμνijϕ, θ� � N jμνiP
N jμνi

, (44)

where N jμνi is the number of detected photons in the state jμνi
and

P
N jμνi is the total number of detected photons. Note

that no-detection events are eliminated from the detection se-
quence, while multiple-detection events are randomly assigned
to only one of the detection channels using a pseudo-random
number generator. The experimental correlation coefficients
E�ϕ, θ� are reported in Fig. 4 as data points. The colored
surface reported in Fig. 4 represents the theoretical correla-
tion coefficient E�ϕ, θ� in the case of non-ideal 50:50 beam
splitters with transmission and reflection power coefficients of
T � 40% and R � 60%, respectively (see Appendix A for the
results of our experimental characterization). This results in

E�ϕ, θ� � η�5� �−48�
ffiffiffi
6

p
� �−24��5� 2

ffiffiffi
6

p
� cos�2ϕ�

� �−24��5� 2
ffiffiffi
6

p
� cos�2θ�

� 48�30� �−13�
ffiffiffi
6

p
� cos�2�ϕ� θ��

� 288�5� 2
ffiffiffi
6

p
� cos�2�ϕ − θ��, (45)

where η � 1
3125 ≃ 3.2 × 10−4. Instead, by a fit of the experimen-

tal data, we obtain η � �3.01� 0.04� × 10−4. The difference
between the theoretical and the fitted η values could be ex-
plained by the broadband spectrum of the LED source, since
for λ ≠ 730 nm the parameters of the MMI are slightly
different.

Using these correlation coefficients, it is possible to con-
struct the correlation function χ�ϕ,ϕ 0, θ, θ 0�. By making the
choice ϕ � −α,ϕ 0 � α, θ � 0, θ 0 � 2α, the correlation func-
tion can be plotted as a function of the parameter α. The re-
sulting χ�α� function is reported in Fig. 5 as a blue curve
[obtained starting from Eq. (45) with the fitted value of η ],
while measured data are plotted as red dots. A good agreement

can be observed. It can also be noticed that the theoretical form
of the correlation function does not reach the maximum attain-
able value of 2

ffiffiffi
2

p
: this is caused by the non-ideal transmission

and reflection coefficients of the MMIs. However, a clear vio-
lation of the CHSH inequality can be observed, reaching
a maximum value χ� � 2.297� 0.004 and a minimum
χ− � −2.181� 0.004, meaning that single-photon entangled
states have been generated. Moreover, it is important to under-
line that the choice ϕ � −α,ϕ 0 � α, θ � 0, θ 0 � 2α gives the
maximum achievable Bell inequality violation only if the con-
sidered entangled state is exactly jϕ�i. However, due to the fact
that the MMI-based beam splitters do not have a 50:50 branch-
ing ratio, in our experimental implementation the generated
state is actually different. For this reason, it is a better strategy
to consider every possible combination of �ϕ,ϕ 0, θ, θ 0� be-
tween the measured E�ϕ, θ� to look for a better violation of the
inequality. Using this approach, we obtain respectively χ� �
2.697� 0.004 for �ϕ0 � −0.576� 0.002, ϕ1 � −1.445�
0.002, θ0 � −1.11� 0.02, θ1 � −1.87� 0.02� and χ− �
−2.668� 0.004 for �ϕ0 � −1.589� 0.002, ϕ1 � 0.863�
0.002, θ0 � −0.35� 0.02, θ1 � −1.27� 0.02�. Error bars
on χ data points are obtained by dividing each 1 s time se-
quence in intervals of 0.2 s. For each interval, the correlation
function is evaluated, and the final uncertainty is obtained as
the standard error related to the number of intervals. Lastly, it is
necessary to correct the values χ� with the terms eχ� [Eq. (41)].
Using the values of current instabilities-related errors reported
in Table 1, we obtain eχ� � 0.092 for χ� and eχ− � 0.077 for

Fig. 4. Experimental correlation coefficients E�ϕ, θ�) (blue dots)
with the related fit (colored surface), according to Eq. (45). ϕ is
the rotation angle of the relative-position qubit, while θ is the rotation
angle of the absolute-position qubit. Color bar refers to the value of E.

Fig. 5. Experimental demonstration of the violation of the Bell in-
equality. Data points (red dots) with their error bars (smaller than the
size of the data points) and the theoretical curve (blue line) of the
χ correlation function, both with respect to the parameter α. In cyan,
the areas corresponding to violation of the Bell inequality. Due to a
failure of the wire bonding of one PS of one MZI, it was possible to
acquire only data points in a limited range of α.

Table 1. Errors on the Rotation Angles ϕ and θ in the
Estimation of χ�a

δϕ1 δϕ2 δϕ3 δϕ4 δθ1 δθ2 δθ3 δθ4

χ� 0.000 0.011 −0.004 −0.006 0.068 0.216 0.036 0.215
χ− 0.002 0.004 0.007 −0.006 0.068 0.187 0.036 0.180

aThe standard error for each value is δ � 0.003 and it is obtained through
repeated measurements. Note that the errors on θ are greater than the errors on
ϕ. This is due to the fact that one of the heaters enabling the θ rotation was not
working.
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χ−. As a result, the corrected values of the correlation functions
are χ� � 2.605� 0.004 and χ− � −2.591� 0.004.

6. FROM ENTANGLEMENT TO QUANTUM-
CERTIFIED RANDOM NUMBERS

Recently, a few of us demonstrated that it is possible to obtain
a semi-device-independent randomness certification scheme
starting from SPE states of momentum and polarization using
a bulky experimental implementation [15,36]. Therefore, here
we use the PIC reported in Fig. 2 as an SDI-QRNG, certified
by the evaluation of the correlation function χ.

Using SPE states, the methods of generating quantum-
certified random numbers can be schematized in the following
way [Fig. 6(a)]: first, a set of angles f�ϕi , θj�gi,j�0,1 is selected to
evaluate the Bell correlation function χ�ϕ0,ϕ1, θ0, θ1�. Then,
the actual protocol starts. A single-photon path-entangled state
is generated. The two qubits that compose the state are rotated
by the operation U �ϕi, θj�. The rotated state is projected over
the four states jUFi, jUN i, jDFi, and jDN i: Depending on
the outcome of the measurement operation, or equivalently,
on the collapsed state, a random digit is obtained accord-
ing to the following encoding: jUFi → 00, jUN i → 01,
jDF i → 10, jDN i → 11. Then, the raw random sequence is
generated by repeating this procedure many times for each pair
of angles. An example of the raw sequence obtained is reported
in Fig. 6(b). Note that the pair of angles �ϕi, θj� can be kept
fixed during a long acquisition of detection events. Then the
angles could be changed, and a new acquisition would start.
This methodology does not require any input randomness
and enables the application of an entropy certification protocol
similar to the one reported in Refs. [15,36].

First of all, we recall the hypotheses over which our certif-
ication scheme is based:

1. SPADs are characterized.
2. A characterization of all the MZIs present on the PIC is

available.
3. The power supply that drives the currents to the PSs is

error-prone and it is not controlled by an adversary.
4. The generation and measurement parameters must be

stable during the acquisition time.

Hypothesis 1 means that the used SPADs are trustworthy
and not controlled by an adversary. Moreover, their non-
idealities, such as the limited efficiency, the probability of
after-pulsing, and the dead time, are known. Such a hypothesis
is necessary to fairly reconstruct the probabilities P�a, bjϕi, θj�.
Indeed, as soon as the pair of angles �ϕi, θj� is not randomized
for every round of the experiment, an adversary could induce
detector clicks in a deterministic way to mimic the violation of a
Bell inequality. Hypotheses 2 and 3, instead, are necessary to set
the same angles ϕ and θ on the different MZIs pairs. In par-
ticular, hypothesis 2 is required to take into account the fact
that the starting phase of each MZI is not exactly 0, while hy-
pothesis 3 is necessary to set the correct currents at the phase
shifters. These hypotheses mean that for each MZI in the PIC,
the relation between the rotation angle ξ and the applied
power W , ξ�W � � bW � d is known. Moreover, the power
supply used is trustworthy and not maliciously controlled by
an adversary. However, it can be error-prone, so it can set
a power W 0, slightly different from the selected one, W .
Hypothesis 4 is necessary to rule out any possible measurement
basis-dependent change of the input state [15]. In practice,
this means that when the pair of angles �ϕi, θj� is fixed and
the measurement is performed, the entangled state and the
rotations do not change with time, i.e., the phases set by
the different PSs do not change. Such a requirement is ensured
by selecting a total measurement time short enough that no

(a)

(b)

Fig. 6. (a) Method to generate a random number: (1) an SPE state is generated (yellow box); (2) the relative- and absolute-position qubits of the
SPE state are rotated respectively by the angles ϕi (first green box) and θj (second green box) by the different MZIs; (3) the rotated SPE state is
measured by state projection on one of the four basis states (jUF i, jUN i, jDF i, jDN i) and the clicking SPAD determines the raw number. These
steps are repeated many times to generate a raw sequence of random numbers. (b) Example of the random number sequence obtained using the
encoding jUF i → 00, jUN i → 01, jDF i → 10, jDN i → 11 given a certain pair (ϕi , θj). The outcome of multiple detection events is randomized
(slots with 	 in the figure), while time bins with no detection are discarded.
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instabilities are observed and by letting the PIC thermalize be-
tween different measurements to eliminate any thermal cross
talk. Our certification protocol is independent of the particular
form of the input state ρ. In particular, for the four sequences of
detection events corresponding to the angles f�ϕi, θj�gi,j�0,1,
the related conditional guessing probability can be bounded
by using [15,36]

Pguess�a, bjϕi, θj� ≤
1

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − �jχrealj − eχ�2∕4

q
� eP , (46)

where χreal is the correlation function in the CHSH form esti-
mated from the experimental data. eχ represents the correction
term previously introduced in Section 3. We stress that the
maximization procedure for eχ is run over every possible com-
bination of angles fϕ,ϕ 0, θ, θ 0g, in such a way to map every
possible operator U real, and over every possible state ρ. eP is
another numerical correction term, which has the same mean-
ing as eχ but for probabilities instead: it represents an upper
bound for the difference between the ideal probabilities ob-
tained by measuring factorized observables and the estimated
probabilities obtained in the presence of the non-idealities here
considered. eP is estimated in the same way as eχ by using the
numerical methods described in Ref. [15]. We remind the
reader that, with respect to the result reported in Ref. [15], here
we are neglecting the Markovian correction to the guessing
probability Pguess, introduced to take into account memory ef-
fects due to detectors non-idealities, such as after-pulsing and
dead time. Indeed, as this work is interested by a lower flux
compared to the one reported in that work, the effect of that
correction is actually negligible. Note that Eq. (46) is valid even
considering the broadband spectrum of our LED source (see
the demonstration in Appendix C).

To experimentally demonstrate the generation of certified
random numbers we select the time trace of the detection
events giving the maximum and minimum violations of the
Bell inequality, as reported in Section 5. These are χ� �
2.697� 0.004 for �ϕ0 � −0.576� 0.002, ϕ1 � −1.445�
0.002, θ0 � −1.11� 0.02, θ1 � −1.87� 0.02� and χ− �
−2.668� 0.004 for �ϕ0 � −1.589� 0.002, ϕ1 � 0.863�
0.002, θ0 � −0.35� 0.02, θ1 � −1.27� 0.02�. The time
traces of the estimated probabilities used for computing the
correlation functions χ� and χ− are reported in Figs. 7(a)
and 8(a). These are obtained as 50 ms long averages. As can
be observed, the probabilities are quite stable during the entire
acquisition time. The values of χ corresponding to these time
intervals are then reported in Fig. 7(b) for χ� and Fig. 8(b) for
χ−, together with their mean value and related 99% confidence
interval (blue shaded region).

Considering these values of violation of Bell inequality
and the corresponding values of eχ , eP [eχ� � 0.092,
eP�χ�� � 0.02 and eχ− � 0.077,eP�χ−� � 0.014], we obtain
the following guessing probabilities:

Pguess�a, bjϕx , θy� � 0.796� 0.002 for χ�,

Pguess�a, bjϕx , θy� � 0.798� 0.002 for χ−:

Note that the upper bound to Pguess�a, bjϕx , θy� given by
Eq. (46) represents the best estimate for the marginal guessing
probability, e.g., Pguess�bjθy� � max

P
a Pguess�a, bjϕx , θy�,

(a)

(b)

Fig. 7. (a) Probabilities of each measurement outcome as a func-
tion of time (blue jDF i, red jDN i, yellow jUN i, and purple
jUF i) for the four pairs of angles �ϕ0, θ0�, �ϕ1, θ0�, �ϕ0, θ1�,
�ϕ1, θ1� of χ�. The estimates have been done considering time inter-
vals of 50 ms. (b) Dots: corresponding values of χ� as a function of
time. Solid line: mean value of χ�. Dashed region: 99% confidence
interval.

(a)

(b)

Fig. 8. (a) Probabilities of each measurement outcome as a func-
tion of time (blue jDF i, red jDN i, yellow jUN i, and purple
jUF i) for the four pairs of angles �ϕ0, θ0�, �ϕ1, θ0�, �ϕ0, θ1�,
�ϕ1, θ1� of χ−. The estimates have been done considering time inter-
vals of 50 ms. (b) Dots: corresponding values of χ− as a function of
time. Solid line: mean value of χ−. Dashed region: 99% confidence
interval.
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where the marginal refers to a single qubit. Therefore, from
an operative point of view, in order to refer Hmin to a single
qubit, we write as bit 0 each photon detected as jF i state inde-
pendently of its absolute position, and as bit 1 each photon
detected as jN i state independently of its absolute position
(i.e., 00,10 → 0; 01,11 → 1). By applying the formula [29]

Hmin � −log2�Pguess�a, bjϕx , θy��, (47)

we get

Hmin � �33.0� 0.4�% for χ�,

Hmin � �32.6� 0.4�% for χ−:

Having used an average rate of 120 kHz for each acquisi-
tion, the final rate of our quantum-certified SDI-QRNG
is given by �120 ×Hmin� kHz which, in the best case
(namely χ�), gives a generation rate of ≃40 kHz. This rate
does not consider the randomness extraction procedure [30].
We remind the reader that, in this work, we focus on the es-
timation of Hmin and the extraction procedure is not per-
formed. However, by applying a quantum-safe randomness
extractor, e.g., Toeplitz-hashing extractor [37] or Trevisan’s
extractor [38,39], it is mathematically proven that it is possible
to obtain a final sequence of independent and uniformly dis-
tributed bits up to a given level of accuracy.

7. CONCLUSION

Single-photon path entanglement has been demonstrated in a
PIC by measuring the Bell inequality violation in the CHSH
formulation. Photons are generated in an off-chip LED, are
manipulated in a PIC fabricated in a silicon foundry, and
are detected by using off-chip silicon SPADs. The PIC is based
on simple and well-known optical components, i.e., MMIs, PSs
based on the thermo-optic effect, MZIs, and CRs. Experi-
mental data are well fitted by a theoretical model which
considers the non-idealities of our setup, mainly related to
unbalanced beam splitters (MMIs). A large violation of the
CHSH inequality is reported (2.605� 0.004) by recursively
trying each possible combination of the acquired correlation
coefficients.

These SPE states are used to demonstrate a certified QRNG
working accordingly to a semi-device-independent certification
protocol similar to the one in Refs. [15,36]. Since in
Refs. [15,36] discrete optical components and different degrees
of freedom were used, a few assumptions are here different.
Specifically, our present approach is based on the knowledge
of the single-photon detectors as well as of the integrated
MZIs. In addition, the power supply controlling the heaters
in the MZIs must be trusted, even if error-prone, as well as
the set phase delays must be stable during the acquisition time.
No hypothesis is needed on the input state. Under these as-
sumptions, we are able to certify a maximum value of the quan-
tum min-entropy Hmin � �33.0� 0.4�%, which is 1 order of
magnitude larger than that obtained with a bulk setup [15].
This large improvement is due to the smaller correction terms
eχ and eP of the integrated QRNG because of the smaller non-
idealities in the integrated photonic components with respect to
the discrete optical components. To compare the proposed
SDI-QRNG to the existing literature, three parameters will

be discussed: security, speed, and integration. Concerning secu-
rity, the proposed QRNG can be compared to source-indepen-
dent QRNGs, in which the source is left uncharacterized while
the measurement operations are fully characterized. Our system
is more secure because the performed measurements are only
partially characterized. The only requirements are that the mea-
sured observables must be in product form, i.e., the measure-
ment performed on one qubit does not influence the other, and
they do not change during the experiment. Apart from these
assumptions, the particular form of the chosen operator is un-
important. Concerning speed, the achieved generation rate is
low compared to the ones reported in the literature.
However, this work has focused on demonstrating the gener-
ation of certified quantum random numbers using an inte-
grated PIC without optimizing the generation rate. The
measured QRNG generation rate (≃40 kHz) is strongly lim-
ited by the actual coupling efficiency of the LED
to the optical fiber and to the PIC, decreasing the photon flux
in the PIC. In future experiments, a better coupling scheme
based on, e.g., optimized grating couplers or direct LED bond-
ing could significantly improve the coupling efficiency. Then,
the saturation rate of the SPAD detectors will give the other
limit. Considering working at the linearity limit of SPADs,
i.e., 1 MHz rate, the achievable certified random bit rate is
of the order of 330 kHz. To further increase such a value,
it is necessary to use engineered detectors, e.g., multiplexing
more SPADs in a single detector. The use of silicon photomul-
tipliers (SiPMs), which are arrays of SPADs, could be a viable
solution. For example, having four SiPMs composed by 16
SPADs with a linearity limit of 1 MHz, as the one reported
in Ref. [40], it is possible to reach a generation rate of
≃5 MHz. By using SiPMs with bigger arrays of SPADs, it
is possible to increase the rate further. Another solution relies
on the multiplexing of N circuits in the same PIC, using the
same light source and dividing it by using an initial 1 × N
MMI. Such a solution will require less attenuation of the
LED. Moreover, all the circuits act as independent SDI-
QRNGs, improving the rate by a factor of N . Last but not
least, integration. The proposed QRNG is particularly interest-
ing concerning potential applications. Many works in the lit-
erature are based on laser sources which can be fully integrated
as well. However, our QRNG uses an LED, which is poten-
tially cheaper to integrate than a laser. This, together with
the possibility of co-integration of the SPADs [41,42], enables
its use for applications that necessitate low production costs,
such as Internet of Things devices.

To conclude, a PIC able to generate quantum certified
random numbers using single-photon path-entangled states
represents a further step to move semi-device-independent
QRNGs from the lab to real-world applications.

APPENDIX A: CHARACTERIZATION OF THE
INTEGRATED OPTICAL DEVICES

The characterization of CRs and MMIs has been performed by
means of a supercontinuum laser and two tapered optical fibers
for in and out coupling to the PIC. Input laser light is TE-
polarized using two half-wave plates and one quarter-wave
plate. Spectrally resolved detection is done with an optical
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spectrum analyzer. The test structure for CR is a sequence of
150 CRs not-equidistant to avoid any Fabry–Perot effect. The
transmission spectrum of a single CR normalized to a reference
straight waveguide is shown in Fig. 9: a measured power trans-
mission coefficient of ≃98% is reported at 730 nm.

For MMIs, optical power at the two output ports is collected
for light entering at both inputs. The experimental data in
Fig. 10 are again normalized with respect to a straight wave-
guide transmission spectrum: Pij indicates the normalized
power coefficient of output i with respect to input j. At
730 nm, the transmission coefficients P11 and P22 are mea-
sured to be ≃40%, while the transmission coefficients P12

and P21 are ≃60%. These are the characterized values entering
into hypothesis 2 of our certification protocol.

APPENDIX B: EXPLICIT COMPUTATION OF THE
VALUES OF n̂,ϕ, θ THAT MINIMIZE THE
HILBERT–SCHMIDT DISTANCE

The square of the Hilbert–Schmidt distance (HS-distance) be-
tween U ideal and U real is given by

Tr��U real − U ideal��U real − U ideal�†� (B1)

� 8 − Tr�D�δϕ1, δϕ2, δϕ3, δϕ4��I ⊗ V ideal�† � h:c:�: (B2)

Hence, one has to find the optimal parameters ϕ,ϑ, n̂maximiz-
ing the term Tr�D�δϕ1, δϕ2, δϕ3, δϕ4��I ⊗ eiφeiϑn̂·σ�† � h:c:�.
By direct computation this term is given by

Tr�V idealU †
1 � U 1�V ideal�†� � Tr�V idealU †

2 � U 2�V ideal�†�,
(B3)

with

U 1 �
�
e2iδϕ1 0
0 e2iδϕ2

�
, (B4)

U 2 �
�
e2iδϕ3 0
0 e2iδϕ4

�
: (B5)

For a particular phase shifter operator of the form

U �α, β� �
�
e2iα 0
0 e2iβ

�
� ei�α�β�ei�α−β�σz (B6)

and a generic unitary operator V � eiφeiϑn̂·σ, by using the com-
position rule in SU(2) one can easily obtain the following
formula:

Tr�U �α, β�V † � VU †�α, β�� � 4 cos�φ − α − β�
× �cos ϑ cos�α − β� � nz sin ϑ sin�α − β��: (B7)

In particular, we have

Tr
h
V idealU †

1 � U 1�V ideal�†
i
� Tr

h
V idealU †

2 � U 2�V ideal�†
i

� 4 cos�φ − δϕ1 − δϕ2�
× �cos ϑ cos�δϕ1 − δϕ2� � nz sin ϑ sin�δϕ1 − δϕ2��
� 4 cos�φ − δϕ3 − δϕ4��cos ϑ cos�δϕ3 − δϕ4�
� nz sin ϑ sin�δϕ3 − δϕ4��, (B8)

and we are now concerned with the computation of the triple
�φ,ϑ, nz� maximizing the right-hand side of Eq. (B8). By
direct computation, it is possible to prove that the maximum
is attained for

nz � 1, φ � δϕ1 � δϕ3 � δϕ2 � δϕ4

2
,

ϑ � δϕ1 � δϕ3 − δϕ2 − δϕ4

2
,

and it is equal to

8 cos

�
δϕ1 − δϕ3

2
� δϕ2 − δϕ4

2

�
cos

�
δϕ1 − δϕ3

2
−
δϕ2 − δϕ4

2

�
,

while the minimum square HS-distance between U real and
U ideal is given by

min
φ,ϑ, n̂

kU ideal −U realkHS �
�
8−8 cos

�
δϕ1 − δϕ3

2
� δϕ2 − δϕ4

2

�

× cos
�
δϕ1 − δϕ3

2
−
δϕ2 − δϕ4

2

��
1∕2

, (B9)

while the operator U ideal is given by

U ideal � I ⊗ �UMMIU Ph�ϕ1,ϕ2�V
idealUMMI� (B10)

with V ideal � eφeiϑn̂·σ and with n̂ � �0,0,1�, φ �
δϕ1�δϕ3�δϕ2�δϕ4

2 , ϑ � δϕ1�δϕ3−δϕ2−δϕ4

2 . The detailed computa-
tion can be performed by considering the map F :�0,2π� ×
�0,2π� × �−1,1� → R defined as

720 730 740 750 760
0.975

0.98

0.985

Fig. 9. Measured transmission spectrum of a single crossing in
SiON.
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0.4

0.45

0.5

0.55

0.6 P11
P12
P21
P22

Fig. 10. Measured transmission spectra of an MMI-based inte-
grated beam splitter made of SiON.
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F �φ,ϑ, nz� ≔ 4 cos�φ − δϕ1 − δϕ2��cos ϑ cos�δϕ1 − δϕ2�
� nz sin ϑ sin�δϕ1 − δϕ2��
� 4 cos�φ − δϕ3 − δϕ4��cos ϑ cos�δϕ3 − δϕ4�
� nz sin ϑ sin�δϕ3 − δϕ4��, (B11)

and computing the triple �φ, ϑ, nz� for which F attains its
maximum. To this end, it is convenient to represent F in
the equivalent form:

F �φ,ϑ, nz� � f �φ� cos ϑ� nzg�φ� sin ϑ, (B12)

where f :R → R and g :R → R are given by

f �φ� � 4�cos�φ − δϕ1 − δϕ2� cos�δϕ1 − δϕ2�
� cos�φ − δϕ3 − δϕ4� cos�δϕ3 − δϕ4��, (B13)

g�φ� � 4�cos�φ − δϕ1 − δϕ2� sin�δϕ1 − δϕ2�
� cos�φ − δϕ3 − δϕ4� sin�δϕ3 − δϕ4��: (B14)

1. First Family of Local Maxima
First of all, we observe that the partial derivative ∂F

∂nz
is given by

∂F
∂nz

�φ, ϑ, nz� � g�φ� sin ϑ. (B15)

Hence, if �φ̃, ϑ̃, ñz� is a point where ∂F
∂nz

� 0, then

(i) either sin ϑ � 0,
(ii) or g�φ� � 0.

(i) In the first case, cos ϑ � �1 and the map F reduces to

F�φ,ϑ, nz� � �f �φ�, (B16)

where f is given by Eq. (B13).
Actually, it is sufficient to find the value of φ maximizing

f �φ�. Indeed, by the elementary identity cos�φ�π�� −cos φ,
it is trivial to check that both functions f and −f attain the
same set of values. By denoting φ	

1 ≔ arg max f , a first local
maximum is attained for ϑ � 0 and φ � φ	

1 .
The precise value φ	

1 can be obtained by solving the equa-
tion f 0�φ� � 0, with

f 0�φ� � −4 sin�φ − δϕ1 − δϕ2� cos�δϕ1 − δϕ2�
− 4 sin�φ − δϕ3 − δϕ4� cos�δϕ3 − δϕ4� � 0: (B17)

By direct computation it is easy to find all the solutions of
Eq. (B17), which have the form φ	

1 � kπ, k ∈ Z, with

φ	
1 � arctan

�
sin�δϕ1 � δϕ2� cos�δϕ1 − δϕ2� � sin�δϕ3 � δϕ4� cos�δϕ3 − δϕ4�
cos�δϕ1 � δϕ2� cos�δϕ1 − δϕ2� � cos�δϕ3 � δϕ4� cos�δϕ3 − δϕ4�

�
:

Actually, thanks to the small values of the parameters
δϕ1, δϕ2, δϕ3, δϕ4, the angle φ	

1 satisfies the inequality jφ	
1 j <

π∕2 and gives a maximum of the function f equal to

f �φ	
1� � 4�cos2�δϕ1 − δϕ2� � cos2�δϕ3 − δϕ4�

� 2 cos�δϕ1 − δϕ2� cos�δϕ3 − δϕ4�
× cos�δϕ1 � δϕ2 − δϕ3 − δϕ4��1∕2, (B18)

while the angle φ	
1 � π gives a minimum.

(ii) In the second case, restricting ourselves to those
values of the variable φ such that g�φ� � 0, the function F
reduces to

F�φ, ϑ, nz� � f jg�0�φ� cos ϑ: (B19)

Since trivially maxg�0jf j ≤ max jf j and j cos ϑj ≤ 1, the
possible local maxima belonging to this set of solutions do
not exceed those found in step (i).

2. Second Family of Local Maxima
Another set of points �φ, ϑ, nz�maximizing locally the function
Eq. (B11) can be searched among those for which nz � �1.
In this case we are concerned with the maximization of the
functions

G��φ,ϑ� � f �φ� cos ϑ� g�φ� sin ϑ, (B20)

with f and g defined in Eqs. (B13) and (B14), respectively.
Since G��φ; 2π − ϑ� � G−�φ,ϑ�, without loss of generality
we can restrict ourselves to the maximization of the function
G�, which can be equivalently written as

G��φ, ϑ� � 4�cos�φ − δϕ1 − δϕ2� cos�δϕ1 − δϕ2 − ϑ�
� cos�φ − δϕ3 − δϕ4� cos�δϕ3 − δϕ4 − ϑ��:

(B21)

The local maxima are to be searched among the stationary
points of G�, i.e., among the solutions of the system8<

:
∂G�
∂φ � 0

∂G�
∂ϑ � 0

: (B22)

More specifically,8>>>><
>>>>:

− sin�φ − δϕ1 − δϕ2� cos�δϕ1 − δϕ2 − ϑ�
− sin�φδϕ3 − δϕ4� cos�δϕ3 − δϕ4 − ϑ� � 0,

cos�φ − δϕ1 − δϕ2� sin�δϕ1 − δϕ2 − ϑ�
� cos�φ − δϕ3 − δϕ4� sin�δϕ3 − δϕ4 − ϑ� � 0.

(B23)

By summing and subtracting the two equations above, we
get the equivalent system

�
−sin�φ − 2δϕ1 � ϑ� − sin�φ − 2δϕ3 � ϑ� � 0,

sin�φ − 2δϕ2 − ϑ� � sin�φ − 2δϕ4 − ϑ� � 0,
(B24)
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which yields the family of linear systems, labeled by two inte-
gers k, h ∈ Z: �

φ� ϑ � δϕ1 � δϕ3 � kπ,

φ − ϑ � δϕ2 � δϕ4 � hπ,
(B25)

with solutions�
φ � δϕ1�δϕ3�δϕ2�δϕ4

2 � k�h
2 π,

ϑ � δϕ1�δϕ3−δϕ2−δϕ4

2 � k−h
2 π:

(B26)

Under the assumption that the fluctuations δϕ1, δϕ3,
δϕ2, δϕ4 are small, the maximum of the map G� is attained
at φ � δϕ1�δϕ3�δϕ2�δϕ4

2 , ϑ � δϕ1�δϕ3−δϕ2−δϕ4

2 and it equals to

G�

�
δϕ1 � δϕ3 � δϕ2 � δϕ4

2
,
δϕ1 � δϕ3 − δϕ2 − δϕ4

2

�

� 8 cos

�
δϕ1 − δϕ3

2
� δϕ2 − δϕ4

2

�

× cos
�
δϕ1 − δϕ3

2
−
δϕ2 − δϕ4

2

�
: (B27)

If the fluctuations δϕ1, δϕ3, δϕ2, δϕ4 are small, one can
verify that the local maximum Eq. (B27) is greater than the
local maximum Eq. (B18). Hence, the absolute maximum is
attained for

nz � 1, φ � δϕ1 � δϕ3 � δϕ2 � δϕ4

2
,

ϑ � δϕ1 � δϕ3 − δϕ2 − δϕ4

2
:

3. Analytical Bound on the HS Norm
We can now introduce a rather conservative bound by comput-
ing the maximum of Eq. (B9) over the admissible range of the
phase fluctuations. In particular, by assuming that

jδζ1j ≤ ϵ, jδζ2j ≤ ϵ, jδζ3j ≤ ϵ, jδζ4j ≤ ϵ, (B28)

for a suitable constant ϵ > 0, then

max
δζ1, δζ2, δζ3, δζ4

min
φ,ϑ, n̂

kU ideal − U realkHS ≤ 2
ffiffiffi
2

p
�1 − cos�2ϵ��1∕2:

(B29)

In particular, by expanding the r.h.s of Eq. (B29) in powers
of ϵ and by neglecting the terms ϵk of order k ≥ 2, we even-
tually get

max
δζ1, δζ2, δζ3, δζ4

min
φ,ϑ, n̂

kU ideal − U realkHS ≤ 4ϵ: (B30)

Consider now the two operators

U real�ϕ1,ϕ2, δϕ1, δϕ2, δϕ3, δϕ4� � U real
ϕ (B31)

and

U real�θ1, θ2, δθ1, δθ2, δθ3, δθ4� � U real
θ : (B32)

Similarly, the factorized operator minimizing the distance
from the U real

ϕ (resp. U real
θ ) will be denoted U ideal

ϕ (resp. U ideal
θ ).

The unitary operator describing the overall action of the rota-
tion stage is given by the productU real

ϕ U real
θ and its HS-distance

from the product of the two ideal (factorized) operators
U ideal

ϕ U ideal
θ can be estimated as

kU real
ϕ U real

θ −U ideal
ϕ U ideal

θ k
HS

≤ k�U real
ϕ −U ideal

ϕ ��U real
φ −U ideal

φ �k
HS

�kU ideal
θ �U real

ϕ −U ideal
ϕ �k

HS
�k�U real

φ −U ideal
φ �U ideal

ϕ k
HS

≤k�U real
ϕ −U ideal

ϕ �kk�U real
φ −U ideal

φ �kHS

�kU ideal
θ kk�U real

ϕ −U ideal
ϕ �k

HS
�k�U real

φ −U ideal
φ �kHSkU ideal

ϕ k
≤ k�U real

ϕ −U ideal
ϕ �k

HS
k�U real

φ −U ideal
φ �kHS

�k�U real
ϕ −U ideal

ϕ �k
HS
�k�U real

φ −U ideal
φ �kHS: (B33)

In particular, by assuming that the phase fluctuations have
maximum amplitude ϵ and by neglecting the terms ϵk of order
k ≥ 2, we get the final estimate:

max
δϕi , δθj

min
φ, ϑ, n̂

kU ideal − U realkHS ≤ 8
ffiffiffi
2

p
ϵ: (B34)

APPENDIX C: ENTROPY CERTIFICATION BASED
ON BELL INEQUALITY VIOLATION

For clarity, in the following discussion we identify the guessing
probability of the main text Pguess withG to better distinguish it
from the probabilities indicated as P. The relevant figure of
merit of a device-independent certification protocol based
on CHSH violation is the (realization-independent) quantum
guessing probability G�P� associated with a (quantum) prob-
ability distribution fP�x, y�gx,y��1 defined as

G�P� ≔ sup
fρ̃,A,Bg∈R�P�

G�ρ̃,A,B�, (C1)

where the family R�P� contains all possible realizations
fρ̃,A,Bg compatible with P, i.e., all pairs of quantum states
ρ̃ and product observables A ⊗ B, each with two possible
outcomes x, y ∈ f�1g, such that

P�x, y� � Tr�ρ̃PA
x ⊗ PB

y �, x, y � �1, (C2)

fPA
x gx��1 and fPB

y gy��1
being the PVMs associated with A

and B, respectively. The corresponding min-entropy is defined
as Hmin ≔ −log2�G�P��.

For a generic mixed state ρ the average guessing probability
G�ρ̃,A,B� appearing on the r.h.s of Eq. (C1) is defined as

G�ρ̃,A,B� � sup

Z
G�ψλ,A,B�dν�λ�, (C3)

where the supremum is taken over all decompositions
ρ � R jψλihψλjdν�λ� of ρ into an incoherent superposition
of pure states jψλi (ν being a probability measure), while

G�ψλ,A,B� ≔ max
�x, y�

Tr�jψλihψλjPA
x ⊗ PB

y �: (C4)

Giving a pure state jψi and two pairs of observables A1,A2,
and B1,B2 yielding a value χ for the correlation function

χ � hA1 ⊗ B1iψ �hA1 ⊗ B2iψ � hA2 ⊗ B1iψ − hA2 ⊗ B2iψ ,
(C5)

the inequality G�ψλ,Ai,Bj� ≤ f �χ�, with f �x� � 1
2 �

1
2

ffiffiffiffiffiffiffiffiffiffi
2 − x2

4

q
, holds true for any i, j � 1,2 [8,43]. By the con-

cavity of the function f , this inequality can be generalized
to the case of convex superpositions of pure states of the form
ρ � R jψλihψλjdν�λ�, even considering the case of two pairs of
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observables A�λ�1,A�λ�2 and B�λ�1,B�λ�2 explicitly depending
on the parameter λ and yielding a CHSH parameter χλ:

χλ�hAλ
1⊗Bλ

1iψλ
�hAλ

1⊗Bλ
2iψλ

�hAλ
2⊗Bλ

1iψλ
−hAλ

2⊗Bλ
2iψλ

:

(C6)

In particular,

max
�x, y�

Z
Tr�jψλihψλjPA�λ�i

x ⊗ P
B�λ�j
y �dν�λ� (C7)

≤
Z

max
�x, y�

Tr�jψλihψλjPA�λ�i
x ⊗ P

B�λ�j
y �dν�λ� (C8)

≤
Z

f �χλ�dν�λ� ≤ f �
Z

χλdν�λ�� � f �χ�: (C9)

The chain of inequalities above, the concavity of the func-
tion f , and the explicit dependence of the final term in
Eq. (C9) only on the parameter χ, i.e., a function of the prob-
ability distributions fPi,j�x, y�gx,y��1 independent of their par-
ticular quantum realizations, allow one to prove the final bound
for the quantum guessing probability of each of the four dis-
tributions fPi,j�x, y�gx,y��1:

G�Pi,j� ≤ f �χ�, ∀ i, j � 1,2: (C10)

Inequality (C10) is actually robust under a generalization of
definition Eq. (C3). Indeed, thanks to the discussion leading to
Eq. (C9), for each quantum probability distribu-
tion fP�x, y�gx,y��1 one can consider a larger set of realizations
allowing one, at least in principle, to change observables accord-
ing to the different components of a mixed state. More pre-
cisely, given a quantum state ρ and any decomposition ρ �R jψλihψλjdν�λ�, one can consider corresponding product
observables A�λ� ⊗ B�λ� such that

P�x, y� �
Z

Tr�jψλihψλjPA�λ�
x ⊗ PB�λ�

y �: (C11)
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